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The	Benefits	of	Cycling



Cycling	Safety	is	a	Concern

• ~500K	cyclists	injured	(~700	deaths)	in	2013	
(CDC	Injury	Center)

• Increase	in	both	number	of	people	riding	and	
number	of	deaths



Causes	behind	Cycling	Accidents

• Inadequate	infrastructure
• More	drivers	on	the	road	(low	gas	prices)
• Smartphone	use	and	distractions
• Increasing	population	in	urban	areas



Approaches	to	Increase	Safety

• Vision	Zero	initiatives	to	eliminate	all	traffic	
fatalities	include:
– Proactive	policy
– Infrastructure	changes
– Education

• Initiatives	have	not	always	been	successful
– In	2018	- LA	5%	increase	in	cyclist	and	pedestrian	
deaths



Understanding	Safety	Perception	
at	the	Street	Level

• Safety	measures	focus	a	lot	on	crash	numbers,	
which	is	an	incomplete	statistic

• We	need	a	better	understanding	of	perceived	
cycling	safety	at	the	street	level



Understanding	Safety	Perception
at	the	Street	Level

• Identify	locations	where	changes	might	be	
more	needed	(decision	makers,	cyclists	and	
advocacy	groups)



Understanding	Safety	Perception	
at	the	Street	Level

• Identify	locations	where	changes	might	be	
more	needed	(decision	makers,	cyclists	and	
advocacy	groups)

• Evaluate	connectivity	and	cycling	safety	per	
community	to	reveal	accessibility	and	equity	
issues



Cycling	Safety	Maps



• Associations	between	Attributes and	Cycling	
Safety	Perceptions

Cycling	Safety	Maps



Attributes

• Measures:	traffic	speed,	traffic	volume,	
frequency	of	parking	turnover
– Require	expensive	sensors	that	cannot	be
available	in	every	street

• Observations	from	video	recordings	
– Expensive	and	not	scalable



Cycling	Safety	Perceptions

• Cycling	safety	perceptions	associated	to	
attributes	are	based	on:
– Logical	intuitions	(e.g.,	more	cars,	less	safe)
– Qualitative	studies,	generalizability	not	validated



Proposed	Approach	- Attributes

Can	we	find	more	affordable	and	scalable	
attributes for	cycling	safety?



Proposed	Approach	– Perception	
Associations

Can	we	formally	validate	that	the	attributes
are	predictive	of	cycling	safety	perception?



New	Approach	to	Perceived	Cycling	
Safety	Maps



Our	Approach

Can	we	find	more	affordable	and	scalable
attributes	for	cycling	safety?

Explore	the	use	of	Open	Datasets	and	Open	
Street	Maps	as	a	source	for	perceived	cycling	

safety	attributes



Open	Data

• Lowering	the	bar	to	comprehensive	cycling	
safety	maps:
– Open	Data	Repositories:	2600	cities	worldwide	
(some	cities	have	the	data,	but	not	public)

– Open	Street	Maps:	4	million	small- to	mid-sized	
cities



Our	Approach

Can	we	formally	validate	that	the	attributes	are						
predictive	of	cycling	safety	perceptions?

Crowdsource cycling	safety	perceptions									
from	cyclists	(ground	truth)	and	build	a	ML	

model	to	test	associations	between	attributes	
and	safety	perceptions
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Fig. 1. Cycling Safety Prediction. The proposed approach consists of three main components: (a) the extraction of cycling
safety levels prediction features from open data portals and Open Street Map, (b) an open source, crowdsourced rating
platform to collect the ground truth cycling safety labels necessary to accurately train the cycling safety prediction models,
and (c) the development and evaluation of accurate and transparent cycling safety prediction models.1

Crash statistics per street segment are typically available by total volume or by type of crash e.g., collision with
�xed car or hit and run. We will explore the use of both to predict cycling safety levels at the street segment; (d)
311 requests are typically available in open data portals. These are citizen-initiated requests to solve a speci�c
problem, and they are collected by city halls through their 311 portals. We will only use 311 requests related
to street conditions such as number of curb, light bulb or road bump repairs as proxies for road conditions,
since these have shown to a�ect the perception of cycling safety [16]; and �nally, (e) parking volumes have
been shown to impact safety perception, with higher parking volumes associated to less safety [36]. Although
parking volumes are not typically available in open data portals, parking and moving violations characterized by
their type are e.g., distracted driving using cell phone, passing stop sign without coming to full stop or parked car
obstructing sidewalk or driveway. Thus, we will explore whether the volumes of parking and moving violations
might help in predicting the perceived cycling safety of a given street segment.

On the other hand, we explore the following built-in environment features (f to h) as potential predictive proxies
for cycling safety at the segment level: (f) road network variables including type of road (street, avenue, etc.),
number of lanes, directionality and slope, which have been reported to play a role in cycling safety perception
[24, 27]. These features are available in Open Street Map, except for the slope which can be computed using
Google’s API Elevation Service, retrieving the elevation of several points in each segment; (g) graph-based

1Map visualization �gures in this paper are created using Lea�et and Carto tiles
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A.	Perceived	Cycling	Safety	Attributes



Open	Data

• Qualitative	research	on	cycling	safety	factors	
has	identified	that	these	factors	play	a	role	in	
safety	perception:
– Social	fabric	e.g.,	crime	rates	(Open	Datasets)
– Built	environment	e.g.,	presence	of	cycling	
facilities	(Open	Street	Maps)



Social	Attributes

• Crime	rates
• Points	of	interest
• Bicycle	crashes
• 311	requests	related	to	street	conditions
• Parking	and	moving	violations



Impact	Buffer
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(a) Built-in Environment Feature: Cycling Facilities
retrieved from Open Street Map

(b) Social Feature: 311 Pothole Requests. Example of the bu�ering approach.

Fig. 4. Examples of built-in environment (a) and social features (b) for the area of Columbia Heights in Washington, D.C..
Cycling facilities are extracted from Open Street Map and assigned to street segments based on coverage. Social features
are assigned to street segments within a given radius. In (b), all 311 pothole requests for 2017 are shown in the large map.
Zooming in, we observe how requests a, b, c and d are counted towards all street segments covered by a 5m radius: only one
street segment for a and c, four street segments for b, or none for d.

partially or completely overlaps that segment. Using this approach, we extract 63 built-in environment features
including 11 road network variables, 39 graph-based and 13 cycling facilities’ variables i.e., (|BEi | = 63).
On the other hand, the social features are extracted from D.C’s open data portal and from Open Street Map

(OSM). We retrieve time-stamped, geolocated events for the following 6 social features: crime, crash, 311 and
parking and moving violations datasets for the past three years; and all the POIs in D.C. from OSM. Each social
feature is divided into the following types: 11 types for crime data, 11 types for crash data, 72 for 311 requests, 10
for POIs, 36 di�erent types of parking violations and 8 types of moving violations.

We explore two representations for each social feature per street segment (except POIs): monthly average across
all types and monthly average per type. The main objective is to evaluate whether a more granular representation
of the social features including volumes per type of event, rather than total volumes, has an impact on the �nal
accuracy of the perceived cycling safety predictions. The monthly average across all types is computed as a
number representing the average of the monthly feature values across the three years of data. Monthly average
per type, on the other hand, is computed as an x-element vector where each element contains the average of
the monthly feature values for each type across all three years. For example, the feature crashes is classi�ed
into 11 di�erent types including assault, burglary or crime with dangerous weapon. Its monthly average would
be computed as a number representing the average of all monthly crimes for the past three years; while the
monthly average per type would be computed as a 11-element vector with each element representing the average
of monthly crimes for a speci�c type of crime over the past 36 months. Thus, the �nal size of the social features’
vectors will be |Si | = 6 for the monthly average across types and |Si | = 148 for the monthly average per type.

Measuring feature sparsity as the percentage of segments that have zero values for a given feature, we observe
that the monthly averages across all types have very little sparsity, with values ranging between 0% and 9%.
However, the monthly averages per type have larger sparsity values ranging from an average of 0.8% for crash
violations to 1.5% for di�erent types of parking or moving violations, and up to values higher than 60% for certain
types of 311 reports. A comparison between the two monthly average representations, together with di�erent
classi�cation methods and feature selection techniques, will allow to disentangle whether the sparsity of the
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Built	Environment	Attributes

• Road	network	characteristics
• Presence	of	cycling	facilities
• Graph-based	road	network	features



Graph-based	Features
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(a) Road Network (b) Primal Graph (c) Dual Graph

Fig. 2. Transformation of the road network defined by two blocks in Washington, D.C., into its undirected primal and dual
graphs. The road network consists of street segments a to g. Given the graphs, graph-based features that characterize the
centrality of the street segments are computed using the SNAP package.

features of the street segments in terms of centrality measures that quantify the importance of the segment in the
overall road network i.e., whether it is a central segment that is typically cycled through to go between any two
points in the city, or more of an outlier segment. Related literature has shown that network centrality measures
play a role in promoting cycling activities which in turn create a critical mass that enhances the perception of
cycling safety [41, 42]. Road network maps can be retrieved from either Open Street Map or open data portals
(as GIS resources). Using the SNAP package over the road networks will allow to evaluate various centrality
measures such as degree, betweenness or page rank, among others, considering the road network of the city
both as an undirected and directed graph (taking into account the direction of the tra�c �ow) [28]. Additionally,
we will evaluate both primal and dual road network approaches that consider either each segment as an edge
and each intersection as a node, or vice versa [43, 44] (see Figure 2 for an example); and �nally, (h) presence of
cycling facilities and their type e.g., dedicated bike lane or lane shared with tra�c. These features, which can
be extracted from Open Street Map, have also been shown to play a role in cycling safety perception as discussed
in Section 2 [32, 36, 37, 50].

3.2 Crowdsourced Rating Platform
We have created a crowdsourced platform that cities can use to collect ground truth data from cyclists with
respect to perceived cycling safety at the street level ([1]). The objective of the platform is to collect ground truth
labels to be able to train and evaluate the accuracy of the prediction methods proposed. Although one might
argue that cities could use predictive models trained for other cities, thus eliminating the need to collect ground
truth data, it is highly probable that models trained in other cities will not be able to capture the local conditions
well, thus decreasing the prediction accuracy rates. In fact, related literature has shown that the impact of the
social features and, to a lesser extent, of the built-in environment features in cycling safety perception changes
across cities, countries and cultures [8, 51]. Finally, the collection of ground truth safety labels only needs to be
executed once, after which safety predictions will change as the prediction features change over time.

Figure 3 shows consecutive snapshots of the platform, as the user navigates through the di�erent steps. After
logging in (step 1), users are asked to rate their cycling experience level by choosing among the four following
options: fearless, con�dent, interested or reluctant (see step 2 in Figure 3). These four types of cyclists are based
on the taxonomy created by Geller et al. and largely used in the cycling literature [14, 15]. Next, we collect survey
information with respect to cycling, demographic and socio-economic characteristics of the user including type
of biking (e.g., utility or recreational), gender, educational level or income, among others (see Personal Features in
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Attributes	for	DC

• 63	built	environment	features
– 11	road	network	types
– 39	graph-based	(centrality	measures)
– 13	cycling	facilities	types

• Social	features:	monthly	average	across	types	(6)	and	
monthly	average	per	type	(148)
– 11	types	for	crime	data
– 11	types	for	crash	data
– 72	for	311	requests
– 10	POIs
– 36	types	of	parking	violations
– 8	moving	violations



B.	Ground	Truth	Data	Collection
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Ground	Truth	Collection

• Recorded	cycling	videos	in	Washington,	D.C
• Built	a	webpage	to	crowdsource cycling	safety	
perceptions

• WABA	promoted	our	project	in	cycling	events
• Collected	cycling	safety	perceptions	from	
cyclists	



Crowdsourced Safety	Perceptions
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1. Login Page 3. Survey (optional)

Finish 
rating

Continue 
Rating

5. Cycling Safety Map 4. Cycling Safety Rating

2. Choose Experience Level

Fig. 3. Crowdsourced rating platform: description of the steps participants go through. First, users are asked to login and
provide their cycling experience level, followed by an optional survey. A�er that, users rate as many videos as they want.
Once they finish, a cycling safety map with all ratings contributed by all volunteers at that point in time is shown.

Table 1 for a comprehensive list). The user can voluntarily provide that information or skip the step if she doesn’t
feel comfortable sharing personal data. After the survey, the user will be shown 20s cycling videos recorded
by actual cyclists and after each video, she will be prompted to provide a cycling safety rating between 1 (too
dangerous, I would never ride there) and 5 (very safe, even a kid could ride there); as well as to choose among 12
di�erent reasons as of why such rating was provided, including tra�c, bike lane design or driving quality, among
others (see step 4 in the Figure). Users can select one or multiple reasons per safety rating provided. Table 1
shows the complete list of safety ratings and rating reasons that the cyclists can select from. Additionally, users
are also asked about their familiarity with the route shown in the video, which will be used in the evaluation as a
feature that might play a role in cycling safety perception. Platform users can watch and rate as many videos
as they want, and videos are shown randomly for the �rst time. However, once a video has at least one rating
the probability of being shown again to another platform user will be slightly higher so as to guarantee that a
cycling safety level for a segment is not exclusively based on one individual rating.
Although platform users rate the perceived cycling safety conditions of the videos, we need to collect safety

labels per street segment since that is the granularity of the proposed prediction methods. The platform internally
computes the cycling safety levels at the street segment as follows. The videos shown in the platform have been
recorded by cyclists with a bike-mounted camera. The recordings contain not only the video footage but also the
GPS traces associated to the cycling trip. We use such GPS information to retrieve the street segments associated
to a given video. However, such process is not straight forward since GPS sensors have errors, and more so in
urban environments where when surrounded by tall buildings the GPS might loose signal or record a location
quite far away from the actual visited point. As a result, we retrieve the list of street segments cycled using
Mapbox’s Map Matching API, which snaps fuzzy, inaccurate GPS traces to actual segments in the road network
[31]. Internally, Mapbox uses the map-matching algorithm by Newson and Krumm, based on Hidden Markov
Models (HMM) that �nd the most likely street segment in the network that is represented by the collected GPS
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Cycling	Safety	Tool	



From	Videos	to	Segments

• Videos	are	rated	multiple	times	by	cyclists
• Each	segment	might	appear	in	multiple	videos
• Final	segment	label	(1-5)	is	averaged	across	
video	ratings	and	weighted	by	%	of	street	
segment	present	in	video



Personal	and	Rating	Features
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Personal Features Safety Ratings Rating Reasons
Usual trip purpose 1: too dangerous, I would never ride there Tra�c
Age 2: a bit dangerous, I wouldn’t ride here unless I have to Bike lane design (or lack of)
Ethnicity 3: fair, I need to be cautious to ride here Bike lane blocked (vehicle)
Education level 4: quite safe, I would easily ride here Dooring (car door might hit cyclist)
Marital status 5: very safe, even a kid could ride here Pedestrians crossing
Gender Intersection design
Driver’s license Driving quality
Access to car Road quality (paving)
Household income Hill
Length of residence in city Neighborhood security
Type of biking Weather

Table 1. Description of personal features, safety ratings and rating reasons that appear on the rating platform. Users can
voluntarily provide their personal information; and are required to assign a safety rating and the reasons behind that rating
for each video watched on the website.

location [33]. Since a video might include only portions of a given street segment i , the platform maintains
internal lists that associate each video j to a set of street segments, with the percentage of each street segment
covered within the video (ci, j ). Street segment safety levels (labels) are computed by (i) averaging all available
participant ratings r for that segment across videos, with the ratings weighted by their segment coverage in the
video i.e., Li = (Õm

j=1(
Õn
q=1 ci, jrq)/n)/m, where n is the number of segment ratings andm is the number of videos

since a segment might partially or fully appear on multiple videos; and (ii) assigning it to its closest integer value
in the range [1-5]. Finally, once the user chooses not to rate any more videos, the cyclist is shown a map where
each street segment is color-coded with its perceived cycling safety level, computed using the ratings provided
by all platform raters until that moment in time (see step 5 in Figure 3). The code for the rating platform will be
made open source upon publication for other cities to replicate this study.

4 EVALUATION
In this section, we evaluate the proposed cycling safety prediction approach using open and crowdsourced data for
the city ofWashington D.C.We �rst present the set of social and built-in environment features Fi = {F (1), ..., F (n)}
extracted for each street segment using Washington’s D.C. open data portal [34] and Open Street Map. Next,
we describe the ground truth data collection of perceived cycling safety ratings using the crowdsourced rating
platform deployed for Washington D.C. in collaboration with Washington Area Bicyclist Association (WABA).
Finally, video safety ratings are transformed into street segment labels Li 2 [1-5] and put together with the
features to evaluate the accuracy of various cycling safety classi�cation methods. We also evaluate the impact that
sparsity, spatial autocorrelation and class imbalance might have on the accuracy of the classi�cation methods.

4.1 Feature Extraction
We represent each street segment i in Washington D.C. as a set of built-in environment BEi and social features Si
i.e., Fi = {BEi , Si }. Built-in environment features are extracted from D.C.’s Open Street Map, and are represented
as a number characterizing each of the features described in section 3.1 ((f)-(h)). While road network and graph-
based features can be directly assigned to each street segment, cycling facilities are slightly more complex, mostly
due to its nature i.e., they can partially or fully overlap a given street segment. Figure 4(a) shows a representation
of the cycling facilities’ information extracted from Open Street Map for a small area in Washington D.C. As we
can observe, some facilities overlap with street segments (lines), while others only do so partially (polygons).
In this paper, a cycling facility is counted as a feature for a given street segment whenever its line or polygon
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(a) Ratings per Participant. (b) Ratings per Cycling Safety Level. (c) Reasons behind Ratings.

Fig. 5. Descriptive statistics about ratings collected through the crowdsourced rating platform in terms of individual rating
contributions; distribution of ratings across safety levels and distribution of reasons behind the ratings provided. Statistics
are computed across all contributors.

feature vectors when using the monthly averages per type might a�ect the predictive accuracy. To preserve the
interpretability of our models no sparse learning approach is used, since our main objective is to predict cycling
safety levels and provide decision makers with actionable insights behind such levels.
Finally, it is important to clarify that the e�ect of social features on cycling safety perception might take

place not only at the lant , lon� coordinates where the feature is recorded, but in a larger area. For example, a
311-pothole recorded in a three-way intersection will probably a�ect cycling safety perception in all three street
segments. To account for that, we create a radius bu�er of rb = 5m such that any social feature event recorded
will be counted towards all street segments covered by a radius of �ve meters around its own geolocation. Figure
4(b) shows an example that applies the bu�er approach to 311-pothole requests, showing how the request is
counted towards only one street segment (a and c), towards four street segments (b) or towards none (d). For the
crime rates feature, we enlarge that radius bu�er to rb = 500m since crimes can potentially have larger areas of
in�uence [22, 30].

4.2 Ground Truth Collection
We launched the rating platform with cycling videos for the city of Washington D.C. The platform was promoted
by Washington’s Area Cyclist Association (WABA) as well as by several other smaller cyclist associations through
cycling events, blog posts and social media feeds to encourage cyclists to access the website and rate the safety of
as many cycling videos as they could. For this paper, we use all the video safety ratings collected over a period
of three months. We collected 1, 476 ratings from 159 di�erent participants, covering a total of 443 city street
segments. Each segment safety label Li 2 [1-5] was computed after averaging all the collected individual ratings
across video coverage and participants, and assigning it to its closest integer value. We had an average of 5.1
ratings per street segment, and these provided perceived safety information for over 3% of all the street segments
in the city of D.C. (out of a total of 13, 462). The ratings collected covered, proportionally, the 13 di�erent road
types in Washington’s D.C. road network [21, 34]. For example, 80% of the street segments in D.C. are streets or
avenues, and 81% of the collected ratings were from these types of roads.
Of the total 159 participants, 84% of them �lled in the cycling, demographic and socio-economic survey.

Platform participants were allowed to skip any questions from the survey and provide answers to only some of
them. Nine out of the eleven survey questions were answered by more than 90% of the participants, with only
the access to car and access to driver’s license questions showing smaller participation percentages of 75% and 87%,
respectively. Approximately 38% of the participants were between 25-34 years, 26% in the 35-44 age range, and
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(a) Average rating = very dangerous (1). (b) Average rating = very safe (5).

Fig. 6. Snapshot of two videos shown in the rating platform. The video on the le� (a) had an average rating of one: very
dangerous, while the video on the right was rated on average as very safe (rating of five). The reasons provided to justify such
ratings were tra�ic, bike lane design and dooring for the very dangerous video, and bike lane design for the very safe se�ing.

14% in the 45-54 range, followed by all other age groups with percentages smaller than 7%. As for gender, the
distribution was almost even with 48% males and 43% females (the remaining 9% did not provide any gender
information). Finally, 41.5% of the participants self-declared themselves as fearless and 44% as con�dent, followed
by 8.2% interested in cycling and 1.9% reluctant (the remaining 4.4% did not answer this question).

On the other hand, Figure 5 shows some statistics about the video safety ratings provided by participants and
the reasons behind them. Figure 5(a) shows the distribution of number of ratings per participant. We observe
that a high percentage of participants (64%) watched and rated 1-10 cycling videos; 23% of participants provided
10-20 ratings; 6% watched 20-30 videos and the remaining 7% were highly active participants rating between
30 and 70 videos each. In Figure 5(b), we observe that the distribution of video ratings per cycling safety level
follows a normal distribution as observed in many other rating tasks with multiple values [25]; with a large
percentage (over 60%) of average cycling safety levels (ratings 3 and 4) and with smaller percentages (5-12%) of
more extreme levels (ratings 1, 2 and 5). Such distribution was also observed for the segment cycling safety levels.
Finally, Figure 5(c) shows that the most common factors a�ecting the rating were the bike lane design (66%),
tra�c (51%), dooring (32%) and road quality (25%). Recall these were multiple-choice and participants could select
more than one feature per rating. As an example, Figure 6 shows the snapshots of two videos shown in the rating
platform. The video in (a) had an average rating of very dangerous, with the most common reasons being tra�c,
bike lane design and dooring (car door might hit cyclist); while the video in (b) was rated, on average, as very
safe, mostly due to bike lane design.

4.3 Methods
We create the training and testing dataset as a set with all the 443 street segments and their perceived segment
safety labels computed for the city of Washington D.C. This unique dataset will be shared as an open resource for
researchers and practitioners working in transportation-related analyses. Each street segment is characterized by
either |Fi | = 69 or |Fi | = 211 di�erent built-in environment and social features depending on whether the social
features are measured by total volumes or by volumes per type, as explained in the previous section. We evaluate
the classi�cation accuracy of the segment safety levels using the following battery of methods: Support Vector
Machines (SVM), Decision Trees (DT), Bagging for DTs (BAG), Random Forest (RF), Gradient Boosting (GBoost)
[39] and Extreme Gradient Boosting (XGBoost)[10]; and compare all these techniques against a simple baseline
that considers all safety labels in our dataset to be the majority label. Finally, we also evaluate the impact that
sparsity, spatial autocorrelation and class imbalance have on the accuracy of the methods.
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Fig. 1. Cycling Safety Prediction. The proposed approach consists of three main components: (a) the extraction of cycling
safety levels prediction features from open data portals and Open Street Map, (b) an open source, crowdsourced rating
platform to collect the ground truth cycling safety labels necessary to accurately train the cycling safety prediction models,
and (c) the development and evaluation of accurate and transparent cycling safety prediction models.1

Crash statistics per street segment are typically available by total volume or by type of crash e.g., collision with
�xed car or hit and run. We will explore the use of both to predict cycling safety levels at the street segment; (d)
311 requests are typically available in open data portals. These are citizen-initiated requests to solve a speci�c
problem, and they are collected by city halls through their 311 portals. We will only use 311 requests related
to street conditions such as number of curb, light bulb or road bump repairs as proxies for road conditions,
since these have shown to a�ect the perception of cycling safety [16]; and �nally, (e) parking volumes have
been shown to impact safety perception, with higher parking volumes associated to less safety [36]. Although
parking volumes are not typically available in open data portals, parking and moving violations characterized by
their type are e.g., distracted driving using cell phone, passing stop sign without coming to full stop or parked car
obstructing sidewalk or driveway. Thus, we will explore whether the volumes of parking and moving violations
might help in predicting the perceived cycling safety of a given street segment.

On the other hand, we explore the following built-in environment features (f to h) as potential predictive proxies
for cycling safety at the segment level: (f) road network variables including type of road (street, avenue, etc.),
number of lanes, directionality and slope, which have been reported to play a role in cycling safety perception
[24, 27]. These features are available in Open Street Map, except for the slope which can be computed using
Google’s API Elevation Service, retrieving the elevation of several points in each segment; (g) graph-based

1Map visualization �gures in this paper are created using Lea�et and Carto tiles

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 0, No. 3, Article 1. Publication date: September 2018.

B.	Ground	Truth	(Validation	Data)

A.	Perceived	Cycling	Safety	Attributes

C.	Perceived	Safety	Prediction

Framework	



Perceived	Cycling	Safety	Prediction

• To	assess	whether	open	and	crowdsourced
data	can	be	used	to
– predict	perceived	cycling	safety	
– assess	associations	between	attributes	and	
cycling	safety	perceptions



Prediction	Results

• Dataset:
– Segments	with	features
– Crowdsourced cycling	safety	labels
– mRMR feature	selection
– 70%-30%	training-testing	10	times	and	report	
averages



Prediction	Results

1:12 •

METHOD / FEATURES BuiltEnv Social [total] Social [type] BuiltEnv+Social [total] BuiltEnv+Social [type]
SVM 0.59/0.31 0.52/0.27 0.54/0.31 0.58/0.34 0.58/0.36

Decision Trees (DT) 0.46/0.34 0.48/0.26 0.49/0.30 0.56/0.31 0.52/0.36
Bagging DT (BAG) 0.60/0.43 0.52/0.29 0.57/0.40 0.62/0.36 0.65/0.42
Random Forest (RF) 0.62/0.45 0.54/0.30 0.57/0.39 0.63/0.37 0.63/0.41

Gradient Boosting (GBoost) 0.60/0.41 0.55/0.31 0.58/0.41 0.62/0.40 0.64/0.44
XGBoost 0.57/0.37 0.55/0.34 0.59/0.43 0.62/0.37 0.65/0.44
Baseline 0.45/0.13 0.45/0.13 0.45/0.13 0.45/0.13 0.45/0.13

Table 2. Micro-F1 (m-F1) and macro-F1 scores (M-F1) for each method (rows) and set of features (columns). The features
include built-in environment features (BuiltEnv), social features modeled by type (Social [type]) or total (Social [total]), and
combinations of both.

We evaluate each method with the following sets of features: (a) built-in environment features only, which
applies the prediction methods over a training dataset that contains the perceived safety labels and only built-in
features as predictors (BuiltEnv); (b) social features (total) only, which applies the prediction methods over street
segments characterized by their perceived safety labels and social features only, computed using the monthly
average across types approach (Social[total]); (c) social network features (type) only, as above, but computing
the social network features as monthly average per type, thus increasing the size of the predictive feature
vector considered from 69 to 211 (Social[type]); (d) built-in environment and social features (total), which applies
the prediction methods over street segments characterized by both built-in environment and social features
represented using the monthly average approach across all types; and (e) built-in environment and social features
(type), as above, but with social features computed using the monthly average per type approach. These analyses,
together with di�erent classi�cation method, will aid in the evaluation of how the sparsity of the feature vectors
a�ects the classi�cation accuracy.
We divide the dataset into 80-20% random splits of training and testing subsets, repeat this process 10 times

and report average safety level prediction accuracies for each method a set of features. To account for the e�ect
of the imbalanced nature of our dataset (safety levels are distributed following a bell shaped curve as shown in
Figure 5(b)), we report and analyze both micro- and macro-F1 scores. Signi�cantly lower micro scores when
compared to macro values, re�ect high misclassi�cation among the most common labels, with labels with lower
numbers of samples being correctly classi�ed. On the other hand, macro scores signi�cantly lower than micro
scores are associated to poor classi�cation rates among labels with lower numbers of samples, with common
labels being correctly classi�ed. Table 2 shows the main results for each method and set of features. The overall
trend shows that, in general, considering only built-in environment features yields slightly better results than
considering only social features (maximum micro F-1 ofm-F1 = 0.62 vs.m-F1 = 0.59); and that both results are
between 14-17% better that the majority vote baseline (with am-F1 = 0.45).
This result reveals that variables such as the type of road, slope, the centrality of the street segment, or the

presence of biking facilities are by themselves more predictive of perceived cycling safety than variables that
characterize the social environment such as crashes, crime rates, 311 bicycle-related complaints or parking and
moving violations. We hypothesize that this could be due to the fact that built-in environment features are
directly experienced by cyclists every time they travel, while the social features require awareness about the
events that happen in the streets. In other words, for social features to have an impact on the prediction of
cycling safety levels, cyclists need to be acquainted with their environment, which might not always be the
case unless they are informed citizens or familiar with the area they are cycling. For example, a cyclist going
through a street might not know that crime rates in that area are high, or that the street has one of the highest
indices in bicycle crashes in the city. However, as she is cycling through the street, she will directly perceive
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(a) Confusion matrix for XGBoost. Percentage of
true (rows) vs. predicted (columns) values.

(b) Map showing the color-coded di�erence between
ground truth and predicted safety levels.

Fig. 7. Confusion matrix and color-coded map showing the di�erences between ground truth and predicted safety levels for
the street segments in Washington, D.C.. In (a), darker colors represent higher accuracy. In (b), green colors represent small,
one level di�erences in the prediction, while the red color represents the worst prediction results (largest level di�erence).

next three sections, we explore three di�erent approaches to improve the F1 scores: (a) address the imbalanced
nature of the dataset; (b) take into account the experience of the participants that provide cycling safety ratings
and (c) incorporate into the model the spatial correlation of the built-in environment and social features.

4.3.1 Imbalanced Dataset. Given that the nature of our dataset is imbalanced i.e., we have more samples with
safety values 3 and 4 than any other labels, we also evaluate two di�erent approaches to potentially improve the
F1 scores. First, we explore the use of over and undersampling techniques in combination with feature selection
techniques; and second, we evaluate the use of only three or four segment cycling safety levels instead of �ve i.e.,
video ratings are transformed into street segment labels Li as explained in section 3.2, but scaled to ranges [1-3]
or [1-4] instead of [1-5]. Although this approach decreases the granularity of the safety ratings provided, it could
be justi�ed if the F1 scores are much higher, since it would provide more accurate cycling safety maps.
We �rst focus on over and undersampling. Undersampling reduces the number of samples of each class to

the smallest value, and repeats the process several times to account for selection biases. On the other hand,
oversampling creates synthetic samples, via k-nearest neighbors, for all classes until they reach the number of
samples in the majority class. We used SMOTE [9] to implement both methods and the resulting F1 scores are
shown in Table 3. For both over and undersampling we also evaluated the use of a feature selection technique
prior to the execution of SMOTE. Speci�cally, we considered mRMR and recursive feature elimination with cross-
validation (RFECV) [38, 40]. Additionally, for over-sampling, we evaluated both regular-SMOTE and SVM-SMOTE.
As Table 3 shows, oversampling slightly improved the XGBoost classi�er by 1% (withm-F1 = 0.66,M-F1 = 0.44)
when no feature selection and a regular SMOTE were used over both built-in environment and social features
(by type); but it did not improve the second best classi�er, Bagging (with mRMR and SVM-SMOTE), which
maintained its accuracy atm-F1 = 0.65,M-F1 = 0.42. Undersampling did not improve any F1 score.

On the other hand, we also re-run all methods and sets of features considering only three or four segment safety
levels instead of �ve. Table 3 (bottom) shows the results for the best methods. As expected, reducing the number
of cycling safety levels improved the F1 scores. Considering only three cycling safety levels improved the best F1
score by 21% with micro and macro scores ofm-F1 = 0.87,M-F1 = 0.54. Importantly, this result was also better
than the majority vote baseline when only three classes are considered (m-F1 = 0.78,M-F1 = 0.3). Similarly,
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METHOD micro/Macro-F1 w/o Autocorrelation
Five-class (XGBoost, I>0.68) 0.66/0.48 0.66/0.47
Four-class (GBoost, I>0) 0.70/0.51 0.69/0.51

Three-class (XGBoost, I>0) 0.88/0.60 0.87/0.57
Table 5. Micro/Macro-F1 scores with spatially autocorrelated features for three, four and five di�erent cycling safety classes
using XGBoost. Moran’s I statistic is shown for each approach. Five safety levels gave the best classification results when
only features with an autocorrelation value I > 0.68 were considered; while four and three levels used all autocorrelated
features for the classification (I > 0). The last column contains the prior results without autocorrelation analysis for three,
four and five cycling safety levels, for comparison purposes.

�ve classes are considered; (iii) the best weighting schemes are familiarity with the route or experience, which
gives more relevance to dangerous ratings by fearless cyclists and boosts safe ratings by reluctant cyclists. Thus,
it is highly advisable that city planners willing to create cycling safety maps using the approach discussed in this
paper take into account both cycling experience and familiarity with the route when training their models.

4.3.3 Spatial Autocorrelation. Many of the built-in environment and social features we use to predict the
cycling safety of a segment might be spatially autocorrelated i.e., their value might be very similar to, or completely
di�erent from, those in the neighboring segments. For example, if the number of crimes in a street segment is high,
the number of crimes in segments nearby might also be high. Here, we explore the use of spatial autocorrelations
as yet another feature to predict cycling safety levels. First, we identify all autocorrelated features and enhance
each segment’s feature vector with as many elements as autocorrelated features have been detected; with each
element representing the average value for that feature across all of the neighboring segments. Next, all the new
segment representations are used to re-run the predictive algorithms for all di�erent combinations of built-in
environment and social features. The spatial autocorrelation is analyzed using Moran’s I statistic to identify the
built-in environment and social features that are spatially autocorrelated. The spatial weights matrix used to
de�ne neighboring segments uses a weighting strategy based on the distance between the mid-points of any pair
of segments, with a distance band (cuto� point after which feature values are ignored) of 150m, which gave the
best results. Features are deemed autocorrelated when the p-values for the Moran’s I test were p < 0.05.
In our dataset, 64 out of 69 features computed as monthly average across types, and 184 out of 211 features

computed as monthly average by type have been identi�ed as being positively spatially autocorrelated. These
features include certain crimes as well as certain types of 311 complaints, with I values in the range of 0.02 < I < 1,
indicating that built-in environment and social features tend to cluster, rather than being dispersed or randomly
distributed. Table 5 shows the best F1 scores for three, four and �ve cycling safety levels, together with the
classi�cation method applied. The results are obtained using both built-in environment and social features by
type gave, since these gave the best results. We also explored di�erent subsets of autocorrelated features ranked
in decreasing order by their autocorrelation value I, and selected the subset ({F } 2 I > X ) that gave the best
F1 scores. The table shows that including spatial autocorrelation information on top of the best approaches
addressing the imbalance of the dataset and taking into account experience and familiarity- improved micro and
macro-F1 scores between 1%-3%. The largest improvements were for the macro scores, which can be related
to an increase in the classi�cation rates of classes with lower numbers of samples (1, 2 and 5 in our setting),
re�ecting that adding spatial information helps in the identi�cation of cycling safety levels when fewer samples
have been collected i.e., the spatial information compensates for the lack of larger numbers of samples. Finally,
�ve safety levels required a more stringent autocorrelation value (I > 0.68), while four and three levels used all
autocorrelated features for the classi�cation (I > 0).
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Important	Predictive	Attributes

• XGBoost:	
– Closeness	centrality	of	the	segment,
– Presence	of	cycling	facilities,	
– Crime	rates,	and
– Slope



Predicted	Map



Future	Work

• Safety	perceptions	and	route	choice
– Combine	safety	predictions	with	data	from	micro-
mobility	solutions

• Understand	changes	in	safety	perceptions	due	
to	interventions

• Safe	cycling	accessibility	across	communities
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