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Economies of Scale in Wastewater Treatment and Planning for Urban Growth: 

 

Abstract. Can urban growth patterns take advantage of economies of scale in 

infrastructure by relying on fewer and larger treatment plants?  Estimates of potential cost 

savings from alternative wastewater treatment consolidation strategies for the 

metropolitan Chicago region suggest that the timing of consolidation is important. 

Carefully timed consolidation, even consolidation that occurs after development has 

occurred, might yield present value savings on the order of $170 million in capital costs. 

These potential savings are large enough that such strategies should be considered when 

planning for metropolitan growth. 

 

 

The Chicago metropolitan region has over 100 wastewater treatment plants, many of 

them very small.  What advantages might accrue if these plants were consolidated over 

time into fewer and larger plants as the metropolitan area continues to grow?  What 

patterns of urban growth would be efficient with respect to capacity expansion, 

consolidation, and replacement strategies?  This case is one instance of the more general 

question: Are cost savings from growth patterns that take advantage of economies of 

scale in infrastructure sufficient to justify the costs of plans, incentives, and regulations 

necessary to achieve such patterns? 

The relationships between land development and infrastructure provision are 

fundamental to plans for urban development (Kaiser, Godschalk, and Chapin, 1995; 

Hopkins, 2001b; Hopkins, 2001a; Knaap, Ding, and Hopkins, 2001).  The empirical 
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literature focuses on costs related to development density and to dispersal of subdivisions 

served by a single wastewater treatment plant (Bahl, 1963; Windsor, 1979; Peiser, 1984; 

Burchell, Shad, Listokin et al., 1998; Speir and Stephenson, 2002). There is little 

empirical literature, however, addressing costs related to the number, sizes, and timing of 

treatment plants for a large metropolitan area and whether urban development uses 

available capacity before new capacity is added at other locations. 

In this paper we estimate potential cost savings from alternative wastewater 

treatment consolidation strategies for the metropolitan Chicago region. Our results 

suggest that the timing of consolidation is important. Carefully timed consolidation, even 

consolidation that occurs after development reaches buildout, might yield present value 

savings on the order of $170 million in capital costs. These potential savings are large 

enough that such strategies are worth investigating in more detail when developing 

alternatives for particular urban development plans. 

 

Infrastructure and efficient urban growth 

Wastewater treatment systems consist of collector sewers, interceptor sewers, and 

treatment plants. Collector sewers bring wastewater from individual buildings to large 

sewers, called interceptors because they originally intercepted the flow from small pipes 

before it entered lakes or rivers.  Interceptors convey wastewater to a treatment plant that 

removes waste and releases cleaner water into a lake or river. Sewers are most efficient if 

they rely on gravity flow, and thus sewer networks generally follow natural drainage 

patterns in order to flow downhill. 
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Focusing on wastewater treatment systems alone, it is, in principle, efficient to build 

one treatment plant of appropriate size with respect to economies of scale of treatment, 

collection, and timing of development and then develop land as rapidly as demand 

warrants until all of the plant capacity is absorbed.  Then, build another treatment plant 

and repeat the process.  This basic idea was the principle used to establish the Urban 

Service Area in Lexington, Kentucky (Segoe and Associates, 1958). The logic of this 

strategy occurs at other scales as well.  Each interceptor sewer should be fully utilized 

before others are built, and each collector sewer should be used before others are built.  

This strategy would result in urban development occurring in a hierarchy of “chunks” of 

different sizes: the service areas of collector sewers, the service areas of interceptors, and 

the service areas of treatment plants. 

Real situations are more complex for several reasons.  One, there are many different 

types of infrastructure—schools, parks, fire stations, water supply—with different 

economies of scale and different spatial patterns (Frank and Fulconer, 1990).  Growth 

patterns should respond to the combinations of these, not just the wastewater treatment 

system.  Two, growth occurs from an existing situation, which includes existing 

infrastructure, land use, ownership, and jurisdiction patterns.  In this case study, we set 

aside the complexity of multiple types of infrastructure, but we address the potential 

gains when evolving from existing patterns as growth occurs.  Although we analyze 

metropolitan Chicago, our purpose is to estimate the approximate magnitude of potential 

savings for a large metropolitan region, not to consider specific alternatives for the 

Chicago Metropolitan area.  The results indicate the types of strategies and policies that 



 5

should be considered, for which more detailed and situation specific analyses should be 

undertaken before making recommendations for specific instances. 

Optimal strategies for efficient expansion of infrastructure capacity are extremely 

difficult to define, much less to identify through computation (Freidenfelds, 1981; Chang, 

Brill, and Hopkins, 1982).  We make no attempt to do so. Instead, we identify three 

scenarios that span a range of possible expansion strategies. After running a simulation to 

determine when, where, and how much expansion would occur in each scenario, we 

compute the capital and operating costs. 

In order to evaluate consolidation of treatment plants, the tradeoff between lower 

costs from economies of scale of larger treatment plants and higher costs from the larger 

and longer interceptors needed to bring wastewater from a larger area to these plants must 

be considered (Chang, Brill, and Hopkins, 1982). We can ignore the costs of collector 

sewers because they will be of the same total length and size regardless of the degree of 

consolidation of treatment plants. It is sufficient to consider only the interceptors 

necessary to consolidate from existing treatment plants by piping wastewater from 

locations of existing plants to locations of consolidated plants. 

The paper is organized as follows.  First, we describe the framework of analysis, the 

data, and their limitations.  Second, we explain the calculations for each scenario.  Third, 

we compare the scenarios. Fourth, we consider sensitivity of the results to uncertainty 

and data error. Finally, we interpret the implications of these results for metropolitan 

development planning. 
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Framework and Data 

The problem is framed at a regional level based on Facility Planning Areas (FPA), 

which are shown in Figure 1. An FPA is the area recognized by the Illinois 

Environmental Protection Agency as the planning area for each sanitary district.  The 

FPA may include area beyond that currently served by that provider. FPAs can expand 

over time, especially on the fringes of development.  New FPAs can also be created.  

Given the metropolitan scope and level of aggregation of this analysis, we ignore these 

potential adjustments in FPA boundaries. 

[Insert Figure 1 about here.] 

 

Initial Situation 

Although we have current flow data for some Facility Planning Areas, we do not 

have complete data.  Therefore, we estimate current flows using these engineering 

estimates and 1990 population and employment data. We used the conventional estimate 

of 100 gallons per capita per day (gcpd), which is currently recommended for system 

design purposes by the Illinois Environmental Protection Agency. These estimates were 

compared to the flow data for FPAs for which we have data. The computed estimates are, 

in general, lower than the observed flows.  There are several possible explanations. Many 

of these plants may collect from combined storm and sanitary sewers and through old 

pipes, which are subject to higher rates of infiltration than assumed for current design 

standards. 

Of 103 FPAs in the Chicago metropolitan region, we have data for 71.  The other 32 

are outside of the area covered by the NIPC population and employment forecasts, very 
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small in demand and area, or in a few cases missing data. We excluded from the 

scenarios the Metropolitan Waste Reclamation District of Greater Chicago (MWRDGC) 

and the forecasted demand for this FPA. These plants are 50 to 100 times larger than 

most other plants. The 1990 capacity for the MWRDGC is about 2,150 MGD while all 

others combined are just 500 MGD at the end of the 30 year forecast period.  One 

treatment plant in the MWRDGC has a capacity of over 1,000 MGD and another a 

capacity of 500 MGD. By our calculations the MWRDGC plants currently have 

sufficient capacity based on the demand predictions we are using. These predictions may 

be misleading because combined storm and wastewater sewers in this area may also carry 

significant quantities of surface water. Most of the MWRDGC area is already built out, 

so demand is unlikely to increase significantly. Errors in estimates of demand or cost for 

these plants would completely overwhelm the remaining components of the system. 

These plants are already so large that they will not be further consolidated. Even if 

additional capacity is built at the same site, it will likely be equivalent to a new plant 

without replacing the existing plant. 

The simulations locate new households and new employees only on “undeveloped” 

land.  For each FPA, the buildout capacity is calculated by assuming that new population 

and employees will consume land at the same rate as current population and employees 

consume developed land in that FPA. Treatment capacity for each FPA is initialized for a 

simulation run, absorbed as development occurs, and increased when plant expansions 

occur based on the expansion rules of that scenario. 
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Demand 

These scenarios use populations and employees forecasted in 1990 by the 

Northeastern Illinois Planning Commission (NIPC) for each municipality for 2020. NIPC 

made two forecasts, one assuming a new airport to the south and one assuming the 

expansion of the existing O’Hare Airport. We use the forecasts without the new airport. 

The differences are not pertinent to this investigation of generic strategies, but would be 

pertinent to decisions to build particular plants. We assume that growth is linear with 

respect to time and convert the 30-year forecasts to five year intervals from 1990 through 

2020. 

These forecasts are also converted spatially from municipalities to FPAs.  First, we 

create the geographic intersection (polygon overlay) of municipalities, facility planning 

areas, and undeveloped land. Forecasts for each FPA are computed as weighted averages 

of the forecasts for the municipalities included in the FPA.  For each municipality, we 

compute the proportions of its undeveloped area in each of the FPAs that served any of 

its area. These portions of each municipality’s growth are then summed across 

municipalities to obtain the growth for the FPA.  These calculations yield a population 

increment and an employment increment for each FPA for each five-year interval. 

Treatment plants are designed to handle a daily average flow estimated from the 

intended service area (see e.g., Viessman and Hammer, 1998).  To estimate demand in 

the same units, we use engineering estimates of daily average flow as a function of 

population for residential and number of employees for non-residential. Demand as 

population and employment is converted to demand in Gallons Per Day (GPD) of 

treatment capacity.  The current engineering convention is to use 100 gallons per resident 
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per day (see e.g. USGS 2001 at http://ga.water.usgs.gov/edu/navguide.html#wateruse). 

For commercial and industrial employment, we estimated consumption from United 

States Geological Survey and Illinois Statistical Abstract data, which resulted in 100 

gallons per day per employee. This calculation was approximated in a couple of ways.  

The simplest was to take total water consumption from public supply sources for 

commercial and industrial uses for Illinois, assume 80 percent of it is returned to 

wastewater treatment system, rather than being consumed in process or product, and 

divide this number by the total number of employees in Illinois. 

We also computed demand at buildout. Working from NIPC land use data, we 

computed the amount of developed urban land and the amount of land available for urban 

development in each FPA.  Developed urban land is currently urbanized, which is 

calculated as all categories except agriculture, vacant, park, wetlands, and water.  Land 

available for urban development is total land minus developed urban land, parks, water, 

and wetlands, which leaves agriculture and vacant.  Buildout demand is computed as 

remaining available land in the FPA multiplied by the current density of demand in that 

FPA. The current density of demand is total GPD divided by developed area for that 

FPA.  These buildout estimates are used to set plant sizes in expansion scenarios. 

 

Costs 

Costs are calculated after running a simulation to generate an expansion path — a 

sequence of changes in sizes of treatment plants at five year time intervals. Costs include 

treatment plan costs, interceptor costs to bring wastewater from sites of existing plants to 

new consolidated plants, and operating costs. 
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The cost of an expansion path for treatment plants is computed as follows: 

 

Cost = Σ j Σ t PW t [4.57 Q jt
.88] 

 

Where  

Cost = cost in millions of dollars in 1990 in 1990 dollars 

j  = treatment plant service area 

t =  time  

PW t         = present worth function for capital stock investment at beginning of 

interval t 

Q j t             = size in million gallons per day design flow of new plant capacity in 

service area j put in service at year t (the beginning of an interval) 

  

The capital cost function is from the United States Environmental Protection Agency 

(1978b), and is converted to 1990 dollars by multiplying the coefficient by the ratio of 

price indexes.  Note that the exponent .88 is close to 1.0, which means that the economies 

of scale are relatively small.  It is, therefore, not surprising that much of the difference 

among the scenarios reported below is attributable to differences in timing of replacement 

of existing capacity, not just to the increase in plant size. 

These capital cost calculations assume that a plant gets built once and lasts forever.  

Under these assumptions, the age of a plant when it is replaced by consolidation would be 

irrelevant. In practice, treatment plants have limited life spans because components wear 

out and technologies and standards change.  It is, therefore, necessary to account for 
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replacement of plants in order to take this timing question into account and to handle 

differences in salvage value at the end of a time period. The cost calculations were 

modified to consider an infinite stream of plant replacements at a fixed interval and cost. 

We assume that the plant must be replaced every thirty years at a cost equal to the cost of 

construction. Speir and Stephenson (2002) annualized costs over a 30 year life, and the 

30 year life and replacement cost assumptions are also roughly consistent with other 

specific cases of replacement. All existing plants are assumed to be new in 1990. 

Sensitivity to these assumptions is considered below. 

The present cost of construction now and a stream of replacements is the sum of a 

geometric series  

c, c / (1+R), c / (1+R) 2 , c / (1+R) 3 … …  

where c is the cost of initial and replacement construction and R is the discount rate over 

the interval of replacement. For this geometric progression of costs, with 1 / (1+R) less 

than 1, the sum can be approximated as c (1+R) /R.  Thus the equation above can be 

modified by inserting a coefficient S equal to (1+R) /R for particular instances of R based 

on annual discount rate and replacement interval to estimate the cost of building and 

sustaining through replacement. 

Cost = Σ j Σ t PW t [S 4.57 Q jt
.88] 

Note that the cost is still discounted from the year in which the plant is first constructed.  

Thus the timing of replacement of capacity during consolidation is still accounted for. In 

our calculations, any plant that was not replaced within the interval 1990 to 2020 based 

on expansion path rules of the scenario is replaced in 2020 to account for costs of 

sustaining that capacity. 
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Costs for the interceptors are calculated as a function of pipe length and quantity of 

flow using estimates from (Nakamura and Brill, 1977) based on (Deininger and Su, 1971; 

Nakamura and Brill, 1977) and converted to 1990 dollars. 

Link Cost = PW t (0.864 qjt
0.5 Lj) 

where qjt is flow in millions of gallons per day in link j and Lj is length of the link in 

miles.  A network of links is designed to bring wastewater from each existing plant to the 

location of the consolidated plant. This network is sized to handle the buildout or 

forecasted flows of each plant in the consolidated service area. The interceptor network 

follows the stream network to assure gravity flow. The cost for this interceptor network is 

the sum of the costs for each link and is incurred when the consolidated plant is built. 

Operating costs must also be considered because they contribute substantially to total 

costs.  The operating cost curve equation is 

Operating Cost = Σt PWt (1.78 Qjt
0.96) 

where Qjt is daily average flow at time t in plant serving service area j. The operating cost 

function is from the United States Environmental Protection Agency(1978a), and is 

converted to 1990 dollars.  This exponent is even closer to 1.0, meaning that operating 

costs show even lower economies of scale than capital costs according to these data. 

Operating costs track flow until year 2020. After 2020 annual operating costs for each 

plant are constant because flows are assumed to equal forecasted 2020 or buildout, 

whichever is greater.  For operating costs we add the operating costs for the first 30 years 

to the discounted infinite stream of operating costs from year 30 
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These treatment plant capital costs, network costs for interceptors to consolidated 

plants, and operating costs are used to assess expansion paths. The next section describes 

three scenarios, which are then compared to assess potential cost savings. 

 

Scenarios 

Three scenarios use different expansion path rules for levels and timing of treatment 

plant consolidation. The distinctions among the scenarios result only from differences in 

the expansion rules. Each scenario uses the same initial conditions based on 1990 census 

data, 1990 plant capacities, and 1990 estimated inflows. 

The first scenario is “Local Consolidation.” If and when the capacity in an FPA is 

exceeded, a new plant is built. Its capacity is sufficient to replace existing capacity and to 

handle in that FPA either buildout demand or the forecasted 2020 demand, whichever is 

greater. This scenario reduces the number of plants slightly because it computes capital 

costs as if there were only one plant in each FPA even though some FPAs currently have 

more than one plant. The costs of interceptors to connect plants within an FPA are small 

relative to other costs and are ignored. The times at which new capacity is added in the 

Local Consolidation scenario are shown in Table 1. If no new capacity is shown until the 

Final column, then a plant is built in 2020 to account for sustainable capacity with a 30 

year replacement interval.  Capacities in the Final column are sufficient for forecasted 

2020 demand, buildout demand, or initial plant capacity, whichever is greater. The total 

capacity is then 494.97 MGD. The 2020 capacities were also calculated as 2020 demand 

or buildout, which yields the total shown in parenthesis, 291.49. This total is lower 
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because it does not build plants to equal initial capacity where that exceeds predicted 

demand, and there is significant initial excess capacity. 

[Insert Table 1 about here.] 

The second and third scenarios, “Late Consolidation” and “Early Consolidation”, use 

an exogenously determined regionalization into four treatment plants serving the major 

watersheds shown in Figure 1. These regional consolidations include 51 FPAs because 

the other 20 FPAs were for various reasons difficult to connect to regional plants. These 

20 remain separate as in Scenario 1. Early Consolidation addresses economies of scale by 

closing more small plants and closing them sooner than Late Consolidation. Early 

Consolidation, however, builds large plants that will be underutilized for longer periods 

of time and replaces more existing plants before the end of their useful lives. 

In Late Consolidation, if and when the capacities of all FPAs in a major watershed 

are exceeded, a new regional plant is built. Its capacity handles predicted 2020 or 

buildout demand, whichever is greater, for the entire major watershed. This scenario 

relies on shifting forecasted population and employment growth among FPAs within each 

major watershed to use available capacity until all capacity in the watershed is used. For 

Late Consolidation, by assuming use of a very small amount of available MWRDGC 

capacity in the last decade, existing capacity is sufficient to absorb forecasted growth in 

each major watershed. Thus, no new plants are built until 2020 when replacement is 

required.  The same four regional plants are built as in Early Consolidation, but at a later 

time.  These four plants are the same sizes as for the Early Consolidation scenario shown 

in Table 2. 

[Insert Table 2 about here.] 
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In “Early Consolidation”, if and when the capacity of any one FPA in a major 

watershed is exceeded, a new regional plant. Its capacity handles all existing demand and 

additional demand to buildout or 2020 forecast, whichever is greater, for the entire 

watershed. In both these scenarios existing plants are closed and connected by 

interceptors to the new consolidated plant as soon as it is built. Early Consolidation 

results are shown in Table 2. 

 

Table 3 compares costs for the three scenarios.  The capital costs are net present 

value in 1990 in 1990 dollars for plant construction and replacement for an infinite 

horizon. The operating costs include the first 30 years plus an infinite horizon with 

constant plant size from 2020. The interceptor costs are construction costs for those 

interceptors necessary for plant consolidations and replacement on a 50 year interval. 

[Insert Table 3 about here.] 

The capital cost numbers in parentheses in Table 3 assume that final capacities are 

built equal to or greater than initial capacities for all FPAs in Local Consolidation and the 

FPAs not part of the regional consolidations for the Late and Early Consolidation 

scenarios. These capital costs are thus higher. The order of preference remains the same, 

but costs for Local Consolidation are comparatively higher because initial capacities 

apply to all FPAs. The number in parentheses for Local Consolidation might be more 

realistic, recognizing the incentive for individual FPAs to build large plants to gain 

growth in competition with neighbors. 

Local Consolidation within FPAs implies some consolidation because plant costs are 

based on the entire FPA, even if it currently has more than one plant. Network 
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consolidation costs in these cases are not reported because they will be much smaller than 

for consolidation across FPAs for a major watershed. This scenario represents the level of 

consolidation that could be accomplished within existing FPA jurisdictions. 

Late Consolidation builds no new plants until replacements in 2020.  Late 

consolidation has the lowest capital costs because new plant construction is delayed for 

30 years. Late consolidation has slightly higher operating costs than Early Consolidation 

however, because it continues to rely on many small plants for the first 30 years.  It also 

is the only scenario that requires shifting population and employment from the forecasted 

locations in order to use existing capacity. It thus incurs higher costs of planning, 

incentives, and regulations, which are not included in these estimates. 

In Early Consolidation, it is expensive to regionalize into large plants as soon as 

capacity of any one FPA in the watershed is exceeded because the new plant replaces all 

existing capacity. That is, it builds a new plant to handle the entire major watershed, and 

all other existing capacity in the watershed is shut down. It also creates buildout or 2020 

capacity long before it is needed. Capital costs are thus much higher than for Late 

Consolidation and even higher than for Local Consolidation, despite the smaller number 

ofplants and larger plants in Early Consolidation. Operating costs are lower for Early 

Consolidation because two large plants are built in the first period and another in 2010.  

As shown in Table 4, Early Consolidation saves operating costs in the first 30 years but is 

the same as Late Consolidation after that. 

[Insert Table 4 about here]. 

 

 



 17

Sensitivity to Assumptions and Data 

How might assumptions and uncertainty in data values affect the interpretation of 

these results? It is worth planning for urban development in relation to economies of 

scale for infrastructure if and only if some expansion strategies have an advantage over 

others and these advantages are large enough to compensate the costs of using that 

strategy. Not only the order of preference, but also the magnitudes of differences among 

the scenarios matter. This section considers possible effects on order of preference and 

magnitudes of differences of several assumptions and data items. 

Single case study. Chicago is unusual in having such a large number of existing 

plants and thus presents a particularly valuable case.  If, in this case, magnitudes of 

differences among strategies were not large enough to justify intervention, then planning 

for investments and regulations is unlikely to be useful in other metropolitan areas in 

which treatment plants are already more consolidated. If, on the other hand, intervention 

is justified here, then when other metropolitan areas grow to encompass existing 

treatment plants in surrounding small towns, similar strategies might be applicable. 

Population forecasts. A larger total population and employment would increase the 

magnitude of savings from consolidation because it would increase the size of 

consolidated plants, which have a relative advantage over smaller sized plants.  The 

spatial pattern of population growth relative to capacities of existing plants could matter, 

as demonstrated by the difference between Late Consolidation, which relies on shifting 

population and employment to fit available demand, and Early Consolidation, which 

accommodates forecasted population and employment in place.  If the forecast happened 

to put the population and employment in the “right” places, there would be no gain from 
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redirecting it and thus no benefit from trying to do so. In this case, there are potential 

gains, which may be sufficient to justify the costs. 

Demand coefficients. There is uncertainty as to appropriate coefficients of demand per 

person and per employee. Variation in these is equivalent to variation in the population or 

employee forecasts. Our calculated estimates for 1990 demand were lower than observed 

flows. Increasing the demand coefficients would yield greater savings from 

consolidation. The same spatial effects discussed for population could also occur. 

Increased demand sufficient to require that plants be built sooner would, however, 

decrease the advantage of Late Consolidation over Early Consolidation. 

Initial plant capacities relative to 1990 demand. Uncertainty in initial plant capacities 

arises because of lack of data on current flows and differences between observed flows 

that may include large percentages of infiltration and storm water compared to design 

standards used for new systems.  When design standard coefficients were used with 

initial populations and employments for 1990, the estimates for inflow to existing plants 

were less than reported inflows for most plants for which we have data. If demand should 

be based on higher coefficients to account for old pipe systems with high inflows or 

storm drainage entering the sanitary sewer system, then plant capacities would be 

exceeded sooner and bigger plants would be built.  The advantages of consolidation 

would therefore be greater. The results presented here may thus underestimate the 

benefits of consolidation. 

Remaining service life of existing plants. In the simulations, all existing plants are 

assumed to have 30 years of remaining useful life.  The Late Consolidation scenario 

gains advantage in part because it avoids replacing usable capacity before the end of its 
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useful life.  It builds all replacement and needed capacity in 2020 which is equivalent to 

building all new capacity after reaching buildout. The other scenarios build new 

consolidated plants when capacity of one plant is exceeded and, therefore, also replace 

many plants with remaining useful service life.  If existing plants had a uniform 

distribution of remaining life from zero to 30 years, the advantage of Late Consolidation 

would decrease because some of the existing plants would have to be replaced sooner 

whether or not their capacity was exceeded. The assumption that all plants have 30 years 

of remaining life may lead to an overestimate of the difference between Early and Late 

consolidation. 

Replacement interval or replacement cost. The replacement cycle solves the problem of 

comparing scenarios that end with different capacities at different service life ages. It 

introduces other uncertainty, however, about the replacement interval and replacement 

cost.  These two variables can be treated as if they were one because varying the 

replacement cost is equivalent to varying the replacement interval once the present value 

is computed.  The 30-year replacement interval and construction cost as replacement cost 

are both probably pessimistic. That is, the interval is probably longer in practice because 

infrastructure is seldom maintained to standards advocated by engineers.  Some of the 

existing facility is likely to be reusable so that replacement costs may be less than initial 

construction costs. On the other hand, modification and remodeling may be more 

expensive per unit of capacity than new construction. These sustainability costs are 

constant for each scenario after 2020 and thus depend only on the 2020 configuration of 

plants.  If costs based on a 30 year interval and using initial cost as replacement cost are 

high, then they overstate the magnitude of advantages of consolidation 
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Discount rates. Discount rates used to compute present value or annualize capital costs 

can affect order of preference and will affect magnitudes of difference as shown in Table 

5. A lower discount rate increases the effect of future costs as a component of total costs.  

The lower the discount rate, the greater the advantage of consolidation because 

consolidation yields continuing advantage far in the future.  A lower discount rate also 

decreases the advantage of Late Consolidation because it reduces the advantage from 

spending money later.  A low discount rate favors consolidation but not later 

construction. The results in Table 5 suggest, however, that timing is still crucial in 

yielding differences among the scenarios. 

Economies of scale exponent parameters for construction costs. The economies of scale 

exponent of .88 for construction cost is relatively close to 1.0 and thus suggests little 

economy of scale. Greater economies of scale (a lower value) would advantage 

consolidation and vice versa. We have no reason to believe that this exponent is either 

high or low, so we cannot predict the likely direction or magnitude of error. 

Economies of scale exponent parameters for operating costs. The economies of scale 

exponent for operating costs of .96 is very close to 1.0, suggesting almost no economies 

of scale. The conventional wisdom is that large plants yield significant economies of 

scale in operation because of the need for an operator for modern plants.  This effect may 

be greatest for a range of relatively small plant sizes, but be overpowered by materials 

and energy costs for differences among very large plants.  Again, we have no basis for 

judging this to be a low or high estimate and thus no basis for direction of error. If 

operating economies of scale were greater (smaller number), not only would 

consolidation be advantaged but also Early Consolidation. 
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Replacement versus increments of plant size. In building new plants, our calculations 

assume that existing capacity is replaced, that is that the cost of the new plant is based on 

the total size of the new plant, not the increment. For Late and Early Consolidation, the 

consolidated plants are so much larger than the existing plants at their locations that it is 

likely an entirely new plant would be constructed. Also, when expansions occur, 

renovations of existing capacity are likely to be accomplished jointly, which we are 

approximating as equal to initial construction cost. This approach may overestimate the 

advantages of consolidation because costs are lower than if costs for the existing plant 

and a new plant for the added increment were computed separately. Given that the 

existing plants are generally small relative to the added capacity, the difference from 

treating them as one plant should also be small. 

Perception effects of expressing results in present value versus annualized costs. In 

thinking about whether a difference among scenarios is large enough to justify 

intervention, expressing differences in present value rather than annualized value may 

matter. People may have different reactions to what is “large” enough to justify 

intervention.  For an infinite horizon at 5% discount rate, the annual equivalent is 

obtained by dividing by 20.  Thus the $170 million difference in capital costs is 

equivalent to $8.5 million annually. This still seems large enough to make intervention 

alternatives worth considering. 

Implications for Infrastructure Planning and Metropolitan Development 

Consolidation strategies for Metropolitan Chicago that replace very little existing 

capacity before the end of its useful life, such as the Late Consolidation scenario, might 

save on the order of $170 million in capital costs and $20 million in operating costs when 
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compared to Local Consolidation. The Late Consolidation scenario is achieved in the 

simulations by shifting forecasted population and employment to other FPAs within the 

major watershed that have available capacity until all available capacity in the major 

watershed is used.  These results suggest that at the metropolitan scope, the conventional 

wisdom is correct: Savings can be achieved by allowing development only where 

capacity is available. This scenario would be difficult to accomplish, however, with 

current patterns of multiple jurisdictions, local control, and competition for real estate tax 

base and retail sales tax among jurisdictions. 

Another way to think about these results is that consolidation can occur after 

buildout. After an area is completely built out and at a time when a large portion of the 

existing capacity in a major watershed is nearing the end of its useful life, it will be worth 

building a consolidated plant. This strategy could be implemented by stretching the life of 

some plants so that it made sense to replace all or most of the capacity at once. The long 

term savings will be sufficient to justify consolidation if only a small proportion of 

replaced capacity has remaining useful life. If buildout has already occurred, there is also 

less interjurisdictional competition for new capacity in particular areas at particular times 

because the tax generating activities are already in place and treatment plant 

consolidation will not affect their location choice criteria. Consolidation could then occur 

at an appropriate time without requiring that demand be shifted from one area to another, 

thus reducing the costs of intervention through incentives and regulation. 

The conventional wisdom is that urban development can be more efficient by relying 

on infrastructure investments of efficient size with respect to economies of scale and 

using available capacity before building new capacity. Our results are consistent with 
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these principles, but they highlight the difficulties that arise when development does not 

start from a clean slate and demand is dispersed across a large area.  The efficient sizes of 

treatment plants can be so large that few regions will ever grow fast enough to justify 

building efficiently sized plants for increments of growth as growth is occurring. Forcing 

development to locate so as to use available capacity can yield large gross savings. In 

some cases, shifting demand may be too difficult to achieve to justify even these large 

savings. The economies of scale for treatment plants must also complement other 

infrastructure with different economies of scale and different spatial patterns. Thus gains 

from efficient provision of treatment plants are likely to conflict with gains for other 

infrastructure.  Resulting tradeoffs will reduce the possible gains from careful timing and 

demand shifting for treatment plant provision. 

 

Conclusion 

The potential gains for treatment plants would be much easier to realize after 

buildout has occurred because conflicts in timing with other infrastructure and difficulties 

of redirecting new development to available capacity would be largely eliminated. It is 

thus likely that in many situations it will be more productive to plan for growth with a 

mix of small treatment plants while growth occurs and then make major consolidations 

after buildout occurs. Even in this approach, it is crucial to consider the remaining useful 

life of plants to be replaced by consolidation. This approach may be consistent with what 

has happened historically in many metropolitan areas. 

This approach does not mean that plans linking infrastructure and land use are not 

useful.  It means that plans should not only focus on chunks of development as they 
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occur, but also account for very long term consolidation scenarios. Plans as strategies 

should consider that some treatment plants and sites will be used for only short periods of 

time, that needed additional land area in eventual consolidation locations should be 

identified and reserved, that plants later abandoned will require that new interceptors be 

built for which rights of way should be identified and reserved, and that jurisdictional 

consolidations and cooperation should be expected to change over time as development 

occurs. 
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Table 1  New construction and final capacities for Local Consolidation Scenario 

FPA Name 1990 1995 2000 2005 2010 2015 2020 Final 
Addison         8.50
Algonquin       2.85  2.85
Antioch         1.60
Aurora         42.00
Barrington  5.78       5.78
Bartlett         4.88
Batavia       4.04  4.04
Beecher    1.00    1.00
Bensenville    5.10    5.10
Bonnie Brae/Forest Man 0.33       0.33
Braidwood        0.63
Carol Stream       5.78 5.78
Carpentersville        5.00
Cary         3.25
Citizen's Utilities Co.        5.04
Crest Hill       1.99  1.99
Crystal Lake         6.20
Deerfield         8.00
East Bolingbrook  2.55       2.55
East Dundee         1.15
Elburn         1.27
Elmhurst         8.00
Elwood        0.54 0.54
Frankfort       4.90  4.90
FRWRD         34.35
Geneva         4.00
Gilberts         0.80
Glendale Hts         8.71
Hampshire         0.46
Hanover Park         3.82
Harvard        2.64 2.64
Hebron        0.66 0.66
Huntley      3.46   3.46
Island Lake         1.20
Itasca     4.81    4.81
Joliet         19.50
Lake in the Hills         3.10
Lake Zurich sub SE Lake 2.70       2.70
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Lakewood 0.29       0.29
Lindenhurst       1.34 1.34
Lockport      3.51   3.51
Lockport Heights        0.24 0.24
Manhattan      1.00   1.00
Marengo-Union        3.09 3.09
Marionbrook         8.30
McHenry        3.93 3.93
Mokena       3.12  3.12
Mundelein         35.00
Naperville  20.37       20.37
New Lenox       3.20  3.20
North Shore Sanitary D         45.73
Northeast Central Lake  5.92       5.92
Northwest Lake  7.22       7.22
Plainfield         3.11
Richmond       0.71  0.71
Romeoville  4.75       4.75
Roselle      2.69   2.69
Salt Creek         3.31
Southeast Central Lake        8.53 8.53
Southeast Lake         16.00
St. Charles         9.35
Sugar Grove        1.00 1.00
Sunnyside         9.00
Thorn Creek Basin S.D.        16.03
Wauconda      2.00   2.00
West Chicago         7.65
Wheaton         13.40
Wilmington        1.29 1.29
Wood Dale     3.59    3.59
Woodridge         23.00
Woodstock        6.71 6.71
TOTAL        494.97
        (291.49)
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Table 2 New construction and final capacities in Millions of Gallons per day for Early 

Consolidation Scenario 

Watershed 1990 1995 2000 2005 2010 2015 2020 Final 

Skokie/Des Plaines 85.74  85.74

Fox  63.16  63.16

Illinois 79.91  79.91

Kishwaukee 9.80 9.80

Unconsolidated FPAs 30.99 1.00 3.46 1.99 14.15 51.69

Total  290.30

 



 31

Table 3  Comparison of Scenarios in millions of dollars 

 

 

 

 

 

 

 

 Local 
Replacement 

Late 
Consolidation 

Early 
Consolidation 

Capital Cost (5%) 
 

549
(742) 

379
(431) 

820 
(873) 

 
Operating Cost 
 

730 710 676 
 

Interceptor Cost  
 

0 24 77 
 

Total Cost 1279 1113 1573 
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Table 4  Timing of operating costs in millions of dollars 

 

 

 

 

 

 

 

 Local 
Replacement

Late 
Consolidation 

Early 
Consolidation 

 
Operating Cost in 

30 years (5%) 
 

516 516 482 

Infinite Horizon 
 

214 
 

194 
 

194 
 

Total 730 710 676 
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Table 5  Sensitivity of treatment plant construction costs to discount rates in millions of 

dollars 

 

 

 

 Local 
Replacement 

Late 
Consolidation 

Early 
Consolidation 

Capital Cost 
(2%) 
 

1,583 
 

839 
 

1,103 
 

Capital Cost 
(5%) 
 

549 
 

379 
 

820 
 

Capital Cost 
(8%) 

332 
 

264 
 

730 
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