MD Route 2: Express Bus Proposal

By: Group 2

Problem Statement

- Analyze bus routes and transportation operations along the Route 2 Corridor
- Identify alternatives for improving transit options and service quality
- Prioritize linking residents with points of interest and important transfer stations

Corridor Growth Management Plan

- Observes projected growth in employment and households over next 20 years which create additional travel demand
- Evaluates 9 most traveled regional highway corridors plus four important connector roads
- Total cost is \$3.6 Billion

Route 2 Growth

• Northbound

- Projected to carry 76,000 vehicles/day by 2035
- **26%** increase in traffic volume
- Southbound
 - Projected to carry 63,000 vehicles/day by 2035
 - **46%** increase in traffic volume
- Serves Annapolis, Glen Burnie, Severna Park, Pasadena, and Baltimore

Route 2 Growth Plan Recommendations

• Northbound

- Widen roadway from 4 to 6 lanes
- New sidewalks
- Permit land use densities to support transit in locations where redevelopment may occur

• Southbound

- Pedestrian and Bicycle Improvement
- Improve site design to orient new buildings and better manage congestion

Transportation Level of Service Forecasts for 2035 Proposed by AAC General Development Plan

Existing Demographics

- Zero Car Households
- Areas in Brooklyn Park, Glen Burnie
 - 135 2302 Households/square mile

Household Income

- Brooklyn Park and Glen Burnie
- At worst 2056 9523 homes/square mi

Transit Commute Time

- Average Commute Time over 60 min
- More consistent along all of Route 2

Average Transit Commute Times of 60+ Minutes

Commuting Patterns

- 42% of AAC residents work within the county
- Majority of them work in Annapolis or Glen Burnie

Existing Public Transportation Routes

- Fastest Route (non-peak hours) takes 1hr and 30 min
- Local 14 ----> Cromwell Station ----> Hunt Valley Light Rail ---> BWI Light Rail
- Fastest Route (peak hours) takes 37 minutes from Cromwell Station to Annapolis
- BusLink Route 215

Existing Public Transportation Routes

Existing Demand

- High Demand for Local 14 bus
- Typically buses are completely full
- Demand calculation depends on bus type
 - \circ 40ft bus has demand of 192 ppl/hr
 - 35ft bus has demand of 172 ppl/hr

Methodology

Proposed Public Transportation Routes

- Should take 54 minutes from Annapolis to Cromwell station during peak hours
- 5 buses every 22 min for peak
- 4 buses every 15 min for off-peak

Stop Addresses for Proposed Express Bus	
A	Row Boulevard & Taylor Ave (WB)
В	1257 Ritchie Highway
С	Ritchie Hwy & Robinson Rd
D	Ritchie Highway & Jumpers Hole (NB)
E	Ritchie Highway & Marley Station (NB)
F	Cromwell Station Loop

Proposed Demand

- Expect high demand since Local 14 buses are usually full
- Traffic volume along Rt. 2 is expected to increase significantly
- Shorter commute ----> More ridership

Infrastructure Requirements

- Local 14 has bus stops along Route 2
 - Bus Stop Concrete Pads
 - Bus Shelters
 - Lane Markings
- Busses
- Hybrid/Diesel Fleet
 - 40 ft and 35 ft

- No new bus stops need to be Constructed
- Proposed stops are located at current Local 14 stops
- Additional Busses to accommodate new Route
 - Recommend 35 ft bus

Environmental Impacts

Existing Conditions

- Heavy Suburban Area leads to congestion on roads
 - No HOV lane currently
- Increase in Carbon Dioxide being released

Proposed Conditions

- Positive
 - Decrease in Carbon Dioxide emissions
 - Increased fuel efficiency
- Negative
 - Using of non-hybrid busses could deter an positive environmental impacts

Cost of Operation

Current:

- Main components are are designed to last 12 years service
 - servicing
 - Estimate of maintenance: \$1.00/mile.
- Capital costs: \$300,000-\$350,000.
- average employment wage of \$29.76.
- Battery pack replacement every 6 years costing \$27,500.
- Estimates the current costs for the county to be \$53.29/hour/bus.

Proposed:

- 1 bus will be \$395,000 with a lifespan of 12 years or 500,000 miles.
- Marketing costs

Performance and Service Measures

• Current situation:

- Current round trip: approximately 3 hours in rush hour
 - Result: unreliable for commuting to work.
 - Demand: more centralized location of bus stops in order to optimize time, money and energy

• Proposed Bus Line will allow:

- Reduction of travel time, fewer stops, reducing the travel time during operational hours, esp. during peak hrs.
 - Result: increase in commuter flexibility and reliability
- Increase comfort.
 - Newer buses entice people to ride the bus.
 - Incorporation of an express route will allow for better seating due to demand being shared between the Local 14 and the proposed express route.

Optimization

$$TC = 2Dc/(vh) + (2qDv_t)/v + qhv_t$$

Peak: $\frac{dTC}{dh} = 0 = \frac{-2Dc}{vh^2} + 0 + qv_t$ $0 = \frac{-2(19miles)(\$64/veh hr)}{(23mph)h^2} + q(9 \$/pass hr)$ $\frac{105.74(\$ hr/veh hr)}{h^2} = q(9 \$/pass hr)$ $\frac{105.74(\$ miles/veh hr)}{(82 pass trip/hr)(9 \$/pass hr)} = h^2$ $\frac{11.75 (pass hr)}{83 (pass trip/hr)} = h^2$ $h^*_{peak} = 0.376 hrs = 23 minutes$

Peak:

- Initial headway = 23 minutes
- 5 buses
- Re-optimized = 22 minutes
- Total Cost = \$1,779/veh hr

Off-peak:

- Initial headway = 16 minutes
- 4 buses
- Re-optimized = 15 minutes

Maryland Statewide Transportation Model (MSTM)

MSTM

- Used for statewide transportation planning
 - Demand forecasting
- Baseline based on 2007
- Proposed including our proposed route in year 2035
- Inputs
 - Type of service, speed, headway, stop delay, stop locations
- Outputs
- Challenges

Strengths/Weaknesses

Strengths

- Shorter commute times
- Hybrid buses reduce emissions
- Alleviates congestion
- Reduced cost since using existing infrastructure

Weaknesses

- High start-up costs
- Bus still stuck in traffic

Conclusion

Express bus along Route 2

6 stops

1hr 48min round trip

5 buses in peak hours, 4 in off-peak

Future Considerations

• Alternative ideas not developed:

- Specialized or more advanced optimization calculation
- $\circ \quad \text{New suburban routes} \\$
- New technology
- Save capital costs and invest in improving only local 14 route
- New infrastructure such as Park and Rides
- Additional lanes
- Accurate modelling and specific corridor study
 - Local data and surveys
- Utilize newer MSTM

Questions?